

DetectX[®] Thromboxane B₂ (TXB₂) ELISA Kit

1 Plate Kit – Catalog No. K092-H1 5 Plate Kit – Catalog No. K092-H5

Sample Types Tested:

Serum, EDTA Plasma, Heparin Plasma, Urine, Tissue Culture Media

Please read this insert completely prior to using the product. For research use only. Not for use in diagnostic procedures. www.ArborAssays.com

TABLE OF CONTENTS

SUPPLIED COMPONENTS & STORAGE	3
OTHER MATERIALS REQUIRED	
PRECAUTIONS	4
BACKGROUND	
ASSAY PRINCIPLE	5
REAGENT PREPARATION	
SAMPLE PREPARATION	
STANDARD PREPARATION	
ASSAY PROTOCOL	
CALCULATION OF RESULTS	9
TYPICAL DATA	10
VALIDATION DATA	11
SAMPLE VALUES	
INTERFERENCE	12
CROSS REACTIVITY	13
	13
CITATIONS	
RELATED PRODUCTS	14
LIMITED WARRANTY	15
CONTACT INFORMATION	15
PLATE LAYOUT	

SUPPLIED COMPONENTS & STORAGE

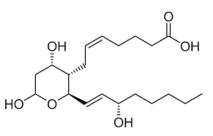
		K092-H1	K092-H5	Description
Goat anti-Rabbit Clear	Quantity	1	5	Strip well plates coated with
Coated 96-well Plate	Catalog No.	X016-1EA	X016-1EA	goat anti-rabbit IgG
Thromboxane B ₂ Standard	Volume	125 µL	625 µL	Thromboxane B ₂ at 25,000
	Catalog No.	C329-125UL	C329-625UL	pg/mL in stabilizing solution
DetectX [®] Thromboxane B ₂	Volume	3 mL	13 mL	Rabbit polyclonal antibody
Antibody	Catalog No.	C330-3ML	C330-13ML	specific for thromboxane B ₂
DetectX [®] Thromboxane B ₂	Volume	3 mL	13 mL	Thromboxane B ₂ -peroxidase
Conjugate	Catalog No.	C331-3ML	C331-13ML	conjugate in stabilizing solution
Accou Buffor Concentrate Ex	Volume	28 mL	55 mL	5X concentrate that must be
Assay Buffer Concentrate 5x	Catalog No.	X067-28ML	X067-55ML	diluted
Weeh Buffer Concentrate 20%	Volume	30 mL	125 mL	20X concentrate that must be
Wash Buffer Concentrate 20x	Catalog No.	X007-30ML	X007-125ML	diluted
TMB Substrate	Volume	11 mL	55 mL	3,3',5,5'-Tetramethylbenzidine,
	Catalog No.	X019-11ML	X019-55ML	a substrate for HRP
Ston Solution	Volume	5 mL	25 mL	1M solution of hydrochloric acid
Stop Solution	Catalog No.	X020-5ML	X020-25ML	CAUSTIC
Plate Sealer	Quantity	1	5	
Fiale Sealer	Catalog No.	X002-1EA	X002-1EA	-

The unopened kit must be stored at -20°C.

Once opened, the kit can be stored at 4°C up to the expiration date on the kit label.

OTHER MATERIALS REQUIRED

- Distilled or deionized water.
- Adjustable pipettes with disposable tips capable of dispensing 25 μL, 50 μL, and 100 μL. Repeater pipette or multichannel pipettes with corresponding tips are also recommended.
- Glass or high-quality polypropylene test tubes for standard and sample preparation.
- An orbital microplate shaker.
- A plate reader capable of measuring absorbance at 450 nm.
- Software for converting optical density (OD) readings from the plate reader and carrying out four parameter logistic curve (4PLC) fitting. Contact your plate reader manufacturer for details.
- Optional: automated plate washer. Refer to Plate Washing Instructions for more details.
 - o <u>https://bit.ly/3tBT7N4</u>
- Optional: Cyclooxygenase (COX) inhibitor such as indomethacin for serum and plasma samples.


PRECAUTIONS

- Read this insert completely prior to using the product.
- This kit may not perform as described if any reagent or procedure is replaced or modified. Do not interchange reagents from different kit lots.
- Take appropriate safety precautions, such as: avoid breathing fumes, wear personal protective equipment (gloves, clothing, eye, and face protection), and familiarize yourself with SDS documents.
 - o https://www.ArborAssays.com/documentation/msds/K092-H_MSDS.pdf
- Ensure all buffers used for samples are azide free and that any plate washing system is rinsed well with deionized water prior to using the supplied Wash Buffer. Buffers, including other manufacturers' wash buffers, that contain sodium azide will inhibit color production from the enzyme.
- Take appropriate precautions when handling the Stop Solution, which is a caustic acid.

BACKGROUND

Thromboxane B₂ (TXB₂), C₂₀H₃₄O₆, is a stable metabolite produced by Thromboxane A₂ (TXA₂) involved in platelet activation and aggregation. The eicosanoid TXA₂ is the predominant product of cyclooxygenase, specifically COX-1¹. COX-1 catalyzes the first two steps of prostaglandins (PGs) biosynthesis². PGs play the key role in generation of an inflammatory response and are primary targets for nonsteroidal anti-inflammatory drugs (NSAIDs)³. TXA₂ itself has prothrombotic

properties and is a known vasoconstrictor. It is also thought to play a role in the pathogenesis of myocardial infarction, stroke, atherosclerosis, and bronchial asthma⁴. TXA₂ is extremely unstable, with a half-life of 30 seconds⁵. Therefore TXB₂, after it is hydrated from active TXA₂⁶, is the ideal candidate for a stable metabolite biomarker to use for an abundance of conditions and measuring anti-platelet drug effectiveness.

ASSAY PRINCIPLE

The DetectX[®] Thromboxane B₂ (TXB₂) ELISA Kit quantitatively measures TXB₂ in serum, plasma, urine, and tissue culture media samples. The TXB₂ ELISA Kit is a competitive ELISA with a run time of 2.5 hours. Please read this complete kit insert for more information before performing this assay.

A TXB₂ Standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. Standards or diluted samples are pipetted into a clear microtiter plate coated with a polyclonal antibody to capture rabbit antibodies. A TXB₂-peroxidase conjugate is added to the standards and samples in the wells. The binding reaction is initiated by the addition of a polyclonal antibody to TXB₂ to each well. As the TXB₂ concentration in the sample increases, the bound TXB₂-peroxidase conjugate decreases, causing a decrease in signal and vice versa.

After an incubation, the plate is washed and substrate is added. The substrate reacts with the bound TXB₂-peroxidase conjugate. After a short incubation, the reaction is stopped and the intensity of the generated color is detected in a microtiter plate reader capable of measuring 450 nm wavelength. The concentration of the TXB₂ in the sample is calculated, after making suitable correction for dilution, using software available with most plate readers.

REAGENT PREPARATION

Except for the reagents listed below, all kit components are ready for use.

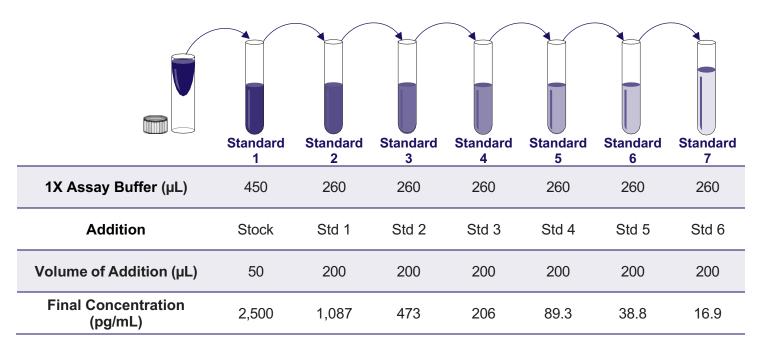
Reagent	Preparation	Stability	
1X Assay Buffer	Warm 5X Assay Buffer to room temperature and mix thoroughly by inversion.	1X Assay Buffer is stable	
TA Assay burier	Mix 1 volume 5X Assay Buffer Concentrate with 4 volumes deionized water.	for 3 months at 4°C	
1X Wash Buffer	Warm 20X Wash Buffer to room temperature and mix thoroughly by inversion.	1X Wash Buffer is stable for 3 months at room	
	Mix 1 volume 20X Wash Buffer Concentrate with 19 volumes deionized water.	temperature	

SAMPLE PREPARATION

For samples containing particulates, centrifuge prior to use. Upon collection, all samples should be frozen rapidly and stored at -80°C until testing.

Sample Type	Procedure
• • Serum and Plasma	Collect samples with care to avoid hemolysis [†] . To avoid exogenous TXB ₂ production, add a general cyclooxygenase inhibitor (e.g. indomethacin, 15 μ M) immediately after sample collection. Prepare a minimum 8-fold dilution by adding 50 μ L sample to 350 μ L 1X Assay Buffer. Samples may require further dilution with 1X Assay Buffer to fall within
•	the standard curve range.
•	Prepare a minimum 8-fold dilution of sample by adding 50 µL urine to 350 µL 1X Assay Buffer.
Urine •	Samples may require further dilution with 1X Assay Buffer to fall within the standard curve range.
•	Use our Urinary Creatinine Detection Kits (K002-H) to measure urine creatinine for normalization of TXB ₂ in urine specimens.
•	This assay has been validated using RPMI-1640. Other types of TCM should be validated before use.
• Tissue Culture Media	Samples should be diluted in TCM and read off a standard curve generated in the same TCM.
(TCM) •	Prepare a minimum 2-fold sample dilution with 250 μL TCM in 250 μL 1X Assay Buffer.
•	Samples may require further dilution with TCM or 1X Assay Buffer to fall within the standard curve range.
Extracted Samples*	For samples that need to be concentrated or contain known interfering substances, a detailed extraction protocol can be found on the Resource page at <u>ArborAssays.com/resources/#protocols</u> or using <u>this link.</u>

[†] Severely hemolyzed samples should not be used in this kit.


* Samples with high lipid content may interfere with the measurement of TXB₂ and may require extraction.

Use all samples within 2 hours of dilution.

STANDARD PREPARATION

- 1. Label tubes Standard 1 through Standard 7.
- 2. Add 450 μL 1X Assay Buffer to Standard 1 tube.
- 3. Add 260 μL 1X Assay Buffer to Standard 2 7 tubes.
- Add 50 µL of the TXB₂ stock solution to Standard 1 tube. Vortex thoroughly.
 ▲ The TXB₂ stock solution contains an organic solvent. Pipet the stock solution up and down several times prior to dispensing to ensure accurate delivery.
- 5. Transfer 200 µL of Standard 1 into Standard 2 tube to make a 2.3-fold dilution. Vortex thoroughly.
- Transfer 200 μL of the mixed solution from Standard 2 into Standard 3 tube to make a 2.3-fold dilution. Vortex thoroughly.
- 7. Continue serially diluting into the remaining tubes. This process and the final concentrations are summarized in the table below.

Use all Standards within 2 hours of dilution.

Before You Begin:

- Ensure all reagents have been warmed to room temperature.
- Dilute samples as described in Sample Preparation.
- Run all standards and samples in duplicate.
- Use the blank plate template on the back page of this booklet to design your plate layout and aid in proper sample and standard identification.
- Be sure to shake the plate as directed. Failing to shake the plate or altering the shaking speed during incubations will result in decreased signal.
- Set plate parameters on the plate reader for a 96-well Corning CoStar 9017 plate. See <u>ArborAssays.com</u> for plate dimension data.
- Determine the number of strip wells to be used and return unused strip wells to the foil pouch with desiccant. Seal the foil pouch and store at 4°C. Desiccant color will change from blue to pink if the foil pouch is not properly sealed.
- If you are using only part of a strip well plate, at the end of the assay discard the used wells and retain the plate frame for use with the remaining unused wells.
- 1. Add 50 µL Samples or Standards into duplicate wells.
- 2. Add 75 µL 1X Assay Buffer into duplicate NSB (non-specific binding) wells.
- 3. Add 50 µL 1X Assay Buffer into duplicate Zero Standard (maximum binding or B0) wells.
- 4. Add 25 µL DetectX[®] Thromboxane B₂ Conjugate to each well using a repeater pipet.
- 5. Add 25 μ L DetectX[®] Thromboxane B₂ Antibody to each well, **except the NSB wells**, using a repeater pipet.
- 6. Cover the plate with a plate sealer and shake at room temperature at 700-900 rpm for **2 hours**.
- Remove the plate sealer, aspirate the plate, and wash each well 4 times with 300 μL 1X Wash Buffer. Tap the plate dry on clean absorbent towels.
- 8. Add 100 μ L TMB Substrate to each well using a repeater pipet.
 - The substrate solution will begin to turn blue.
- 9. Incubate at room temperature for **30 minutes** without shaking.
- 10. Add 50 μL Stop Solution to each well using a repeater pipet.
 - The substrate solution will begin to turn yellow.
- 11. Read the optical density at 450 nm within 10 minutes.

CALCULATION OF RESULTS

Follow the instructions below, or use the online tool from MyAssays. https://www.myassays.com/arbor-assays-detectx-thromboxane-b2.assay

EVANDLE.

- 1. Use four-parameter logistic curve (4PLC) software to calculate the TXB₂ concentration for each sample.
- 2. Gather all raw data OD readings from each Sample and Standard, including the Zero Standard (B0) and NSB.
- 3. Average the duplicate OD readings for each Sample, Standard, B0, and NSB (Mean OD).

Replicate 1 OD	Replicate 2 OD	Mean OD
0.090	0.091	0.091
1.420	1.376	1.398
0.648	0.715	0.682
	0.090	0.090 0.091 1.420 1.376

4. Subtract the NSB from the Mean OD for each Sample, Standard, and the B0 (Net OD).

EXAMPLE:			
Sample	Mean OD	NSB Mean OD	Net OD
B0	1.398	0.091	1.307
Sample 1	0.682	0.091	0.591

 Divide the Net OD for each Sample and Standard by the Net OD for the B0 and multiply by 100% (%B/B0).

EXAMPLE:			
Sample	Net OD	B0 Net OD	%B/B0
Sample 1	0.591	1.307	45.2

6. Plot the standard curve with %B/B0 for the Standards on the y-axis and TXB₂ concentration (pg/mL) on the x-axis. Perform a 4PLC fit.

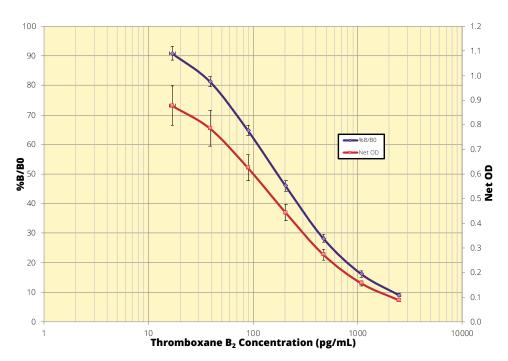
Use the sample %B/B0 readings and the 4PLC fit to calculate TXB₂ concentrations in diluted samples. If diluted sample cortisol concentrations are outside of the range of the standards, the sample should be prepared again at a more appropriate dilution.

Sample	Net OD	%B/B0	Sample TXB ₂ Concentration (pg/mL)
Sample 1	0.591	45.2	235

7. If the original sample was diluted, multiply the sample TXB₂ concentration by the sample dilution factor to determine the concentration of TXB₂ in the original sample.

EXAMPLE:

Sample	Sample TXB ₂	Sample	Original Sample TXB ₂
	Concentration (pg/mL)	Dilution Factor	Concentration (pg/mL)
Sample 1	235	8	1880



TYPICAL DATA

Always run your own standard curve. This data should NOT be used to interpret experimental results.

Sample	Mean OD	Net OD	%B/B0	Sample TXB ₂ Concentration (pg/mL)
NSB	0.076	0.000	-	-
Standard 1	0.163	0.087	9.0	2,500
Standard 2	0.232	0.156	16.2	1,087
Standard 3	0.348	0.272	28.2	473
Standard 4	0.519	0.443	46.0	206
Standard 5	0.702	0.626	64.8	89.3
Standard 6	0.862	0.786	81.3	38.8
Standard 7	0.954	0.878	90.9	16.9
B0	1.050	0.974	100	0
Sample 1	0.369	0.293	30.1	429
Sample 2	0.789	0.713	73.0	61.1

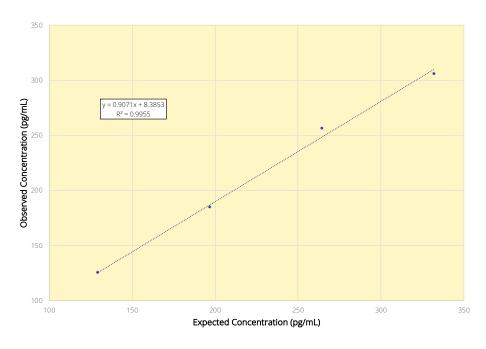
Typical Standard Curve

VALIDATION DATA

Sensitivity and Limit of Detection

Sensitivity was calculated by comparing the ODs for twenty wells run for each of the B0 and Standard #7. The detection limit was determined at two standard deviations from the B0 along the standard curve.

Sensitivity was determined as 11.2 pg/mL.


The Limit of Detection was determined in a similar manner by comparing the ODs for twenty wells run for each of the B0 and a low concentration sample.

The Limit of Detection was determined as 11.0 pg/mL.

Linearity

Linearity was determined in human serum by diluting two samples with known TXB₂ concentrations. One sample had a TXB₂ concentration of 62.3 pg/mL (low serum), and one had a TXB₂ level of 400 pg/mL (high serum). The two samples were mixed in the ratios given below, and the measured concentrations were compared to the expected values for each given ratio.

Low Serum	High Serum	Expected Concentration (pg/mL)	Observed Concentration (pg/mL)	% Recovery
80%	20%	130	125	96.6
60%	40%	197	185	93.6
40%	60%	265	256	96.8
20%	80%	332	306	92.0
			Mean Recovery	94.7

Intra Assay and Inter Assay Precision

For intra assay precision, three serum samples were diluted in 1X Assay Buffer and 22 replicates were run in one assay. For inter assay precision, three serum samples were diluted in 1X Assay Buffer and duplicates of each sample were run in twenty assays run over multiple days by multiple operators. %CV represents the variation in concentration (not optical density) as determined using a reference standard curve.

	Intra Assay Precision		Inter Assay Preci	sion
Sample	TXB ₂ Concentration (pg/mL) % CV		TXB ₂ Concentration (pg/mL)	% CV
1	451	4.5	429	7.6
2	171	8.2	158	6.3
3	71.0	8.3	61.0	8.3

SAMPLE VALUES

7 human serum, 7 human plasma, and 4 human urine samples were diluted in 1X Assay Buffer and tested in the assay. The adjusted average concentration and sample range are shown below.

Sample Type	Recommended Minimum Dilution	Adjusted Average Concentration (pg/mL)	Adjusted Concentration (pg/mL) Range
Serum	1:8	3,267	411 - 9,747
Plasma	1:8	1,662	351 – 5,589
Urine	1:8	784	537 – 1,147
RPMI-1640	1:2	96.2%*	91.4 - 101.4%*

* Spiked recovery analysis was performed for RPMI-1640 tissue culture media.

INTERFERENCE

Potentially interfering substances were evaluated in the assay and the change in signal was calculated.

Interferent	Effect
DMSO (2.5%)	9.8% decrease
Ethanol (1.25%)	6.8% decrease
Methanol (10%)	4.0% decrease
SDS (0.6%)	33.8% decrease – Do Not Use
TritonX-100 (10%)	0.9% decrease
Tween-20 (0.6%)	33.9% decrease – Do Not Use
Hemoglobin (40 mg/dL)	4.1% increase
Bilirubin (5 mg/dL)	1.6% increase

CROSS REACTIVITY

The following cross reactants were tested in the assay at 40x, 4.0x, 0.4x and 0.04x concentration of the highest standard. Percent cross-reactivity was calculated comparing observed concentration to actual concentration of each cross reactant.

Eicosanoid	Cross Reactivity (%)		
Thromboxane B ₂	100		
2,3-dinor Thromboxane B ₂	35.1		
Thromboxane B₃	20.9		
11-dehydro Thromboxane B ₂	2.2		
Prostaglandin D ₂	0.9		
11-dehydro Thromboxane B ₃	0.7		
Prostaglandin I ₂	< 0.01		

TROUBLESHOOTING

Issue	Possible Cause & Solution		
Reagent Shortage	 Check under the cap for additional reagent. Pulse spin reagent containers to collect contents prior to opening when possible. When using a multichannel pipette, return unused reagent to container for later use. 		
Erratic Values	 Ensure the assay plate has been properly blotted after assay washes to remove residual wash buffer. Prerinse pipet tips with desired reagent prior to aspirating the required volume. Deliver volume with care to prevent splashing into adjacent wells. 		
High NSB	 Ensure assay plate has been properly washed with the number of washes indicated in the protocol. Reagent contamination during assay setup. Verify antibody was not added to the NSB wells. 		
Low Signal	 Confirm tools, equipment, reagents, and containers used do not contain any trace of sodium azide. Altering shaking speeds or excluding shaking during incubation steps. Verify the plate reader wavelength is 450 nm. Confirm reagents are at room temperature prior to use. 		

CITATIONS

- 1. Szczuko, M., Kozioł, I., Kotlęga, D., Brodowski, J., & Drozd, A. (2021). The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. *International journal of molecular sciences*, 22(21), 11644.
- 2. Rouzer, C. A., & Marnett, L. J. (2009). Cyclooxygenases: structural and functional insights. *Journal of lipid research*, *50 Suppl*(Suppl), S29–S34.
- 3. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011 May;31(5):986-1000.
- 4. Rucker D, Dhamoon AS. Physiology, Thromboxane A2. [Updated 2022 Sep 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.
- 5. Li K, Zhao J, Wang M, Niu L, Wang Y, Li Y, Zheng Y. The Roles of Various Prostaglandins in Fibrosis: A Review. Biomolecules. 2021 May 24;11(6):789.
- 6. Catella, F., Healy, D., Lawson, J. A., & FitzGerald, G. A. (1986). 11-Dehydrothromboxane B2: a quantitative index of thromboxane A2 formation in the human circulation. *Proceedings* of the National Academy of Sciences of the United States of America, 83(16), 5861–5865.

Kits	Catalog No.
PGE2 Multi-Format ELISA Kits	K051-H1/H5
3',3'-Cyclic GAMP ELISA Kits	K073-H1/H5
2',3'-Cyclic GAMP ELISA Kits	K067-H1/H5
Arg8-Vasopressin (AVP) Colorimetric and Chemiluminescent ELISA Kits	K049-H1/H5 K049-C1/C5
Atrial Natriuretic Peptide (ANP) ELISA Kits	K071-H1/H5
B-type Natriuretic Peptide (BNP) Human ELISA Kit	K083-H1/H5
Cyclic GMP Direct ELISA Kits	K065-H1/H5
Endothelin-1 ELISA Kit	K045-H1
Nitric Oxide (NO) Colorimetric Detection Kit	K023-H1
ST2 Human ELISA Kit	K055-H1

RELATED PRODUCTS

LIMITED WARRANTY

Arbor Assays warrants that at the time of shipment this product is free from defects in materials and workmanship. This warranty is in lieu of any other warranty expressed or implied, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose.

We must be notified of any breach of this warranty within 48 hours of receipt of the product. No claim shall be honored if we are not notified within this time period, or if the product has been stored in any way other than outlined in this publication. The sole and exclusive remedy of the customer for any liability based upon this warranty is limited to the replacement of the product, or refund of the invoice price of the goods.

DetectX, ThioStar, and the Arbor Assays logo are all registered trademarks of Arbor Assays.

CONTACT INFORMATION

For details concerning this kit or to order any of our products please contact us:

Arbor Assays

1514 Eisenhower Place Ann Arbor, Michigan 48108 USA

Phone: 734-677-1774 Fax: 734-677-6860 Web: <u>www.ArborAssays.com</u>

Email Addresses:

Info@ArborAssays.com

Orders@ArborAssays.com

Technical@ArborAssays.com

OFFICIAL SUPPLIER TO ISWE

Arbor Assays and the International Society of Wildlife Endocrinology (ISWE) signed an exclusive agreement for Arbor Assays to supply ISWE members with assay kits and reagents for wildlife conservation research.

PLATE LAYOUT

I	G	п	m	D	n	ω	►	
								N
								ы
								4
								ഗ
								6
								7
								œ
								9
								10
								=
								12
	» •		1		-			

FSC Printed on Forest Stewardship Council certified paper

©2024

