

DetectX[®] Superoxide Dismutase (SOD)

Colorimetric Activity Kit

2 Plate Kit - Catalog No. K028-H1

Species Independent

Sample Types Tested:

Serum, Plasma, Cells, Tissues, and Erythrocyte Lysates

Please read this insert completely prior to using the product. For research use only. Not for use in diagnostic procedures. www.ArborAssays.com

TABLE OF CONTENTS

TABLE OF CONTENTS
SUPPLIED COMPONENTS & STORAGE
OTHER MATERIALS REQUIRED
PRECAUTIONS
BACKGROUND4
ASSAY PRINCIPLE4
REAGENT PREPARATION
SAMPLE PREPARATION6
STANDARD PREPARATION7
ASSAY PROTOCOL8
CALCULATION OF RESULTS
TYPICAL DATA10
VALIDATION DATA11
SAMPLE VALUES12
INTERFERENCE12
TROUBLESHOOTING
CITATIONS14
RELATED PRODUCTS14
LIMITED WARRANTY15
CONTACT INFORMATION
PLATE LAYOUT16

SUPPLIED COMPONENTS & STORAGE

		K028-H1	Description
Clear Half Area 96-well Plate	Quantity	2	- Non-tracted half area 06 well plates
Clear Hall Area 90-well Plate	Catalog No.	X018-2EA	 Non-treated half-area 96-well plates
Superoxide Dismutase	Quantity	50 µL	 SOD at 9,200 U/mL in stabilizing solution
Standard*	Catalog No.	C098-50UL	- SOD at 9,200 0/ITL III stabilizing solution
Assay Buffer	Volume	50 mL	Buffer containing detergents, stabilizers,
Assay Buller	Catalog No.	X100-50ML	and dye.
Xanthine Oxidase Buffer	Volume	6 mL	Buffer containing detergents and
Aanthine Oxidase Buller	Catalog No.	X102-6ML	stabilizers.
Xanthine Oxidase	Volume	225 µL	25X concentrated suspension of
Concentrate 25X	Catalog No.	C099-225UL	Xanthine Oxidase that must be diluted
Substrate Diluent	Volume	12 mL	 Substrate buffer. Keep tightly capped.
Substrate Diluent	Catalog No.	X101-12ML	- Substrate bullet. Reep lightly capped.
Substrate Concentrate 10X	Volume	1.1 mL	 10X concentrate that must be diluted
Substrate Concentrate 10X	Catalog No.	C100-1.1ML	

The unopened kit must be stored at -20°C. Once opened, the kit can be stored at 4°C up to the expiration date on the kit label, except for the SOD Standard, which must be stored at -20°C.

*Aliquot the standard in high-quality polypropylene tubes prior to avoid multiple freeze-thaw cycles.

OTHER MATERIALS REQUIRED

- Distilled or deionized water
- Adjustable pipettes with disposable tips capable of dispensing 10 μL, 25 μL, 50 μL, 100 μL, and 1000 μL. Repeater pipettes or multichannel pipettes with corresponding tips are also recommended.
- Amber tubes sufficient to store 1X Xanthine Oxidase and 1X Substrate working solutions
- Glass or high-quality polypropylene test tubes for standard and sample preparation
- A plate reader capable of reading optical density at 450 nm
- Software for converting optical density (OD) readings from the plate reader and carrying out four parameter logistic curve (4PLC) fitting. Contact your plate reader manufacturer for details.
- Optional: 1X Phosphate Buffered Saline (1X PBS; for cell and tissue samples)
- Optional: Potassium Cyanide solution (inhibition of Cu/Zn and extracellular SOD)
- Optional: Protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF; for cell samples).

PRECAUTIONS

- Read this insert completely prior to using the product.
- This kit may not perform as described if any reagent or procedure is replaced or modified. Do not interchange reagents from different kit lots.
- Take appropriate safety precautions, such as: avoid breathing fumes, wear personal protective equipment (gloves, clothing, eye, and face protection), and familiarize yourself with SDS documents: <u>https://www.arborassays.com/documentation/msds/K028-H1_MSDS.pdf</u>

BACKGROUND

Short-lived and highly reactive oxygen species (ROS) such as O2⁻ (superoxide), ⁻OH (hydroxyl radical), and H_2O_2 (hydrogen peroxide) are continuously generated *in vivo*. In the resting state, the balance between antioxidants and oxidants is sufficient to prevent the disruption of normal physiologic functions. However, changes in the levels of these two can disrupt this balance, resulting in abnormal levels of ROS and causing oxidative stress^{1,2}. Cellular levels of ROS are controlled by antioxidant enzymes and small molecule antioxidants, with one of the major enzymes being Superoxide Dismutase (SOD).

SOD catalyzes the reduction of superoxide anions to hydrogen peroxide and oxygen. There are three types of SOD isoenzymes which are classified based on their metal cofactor: Fe-SOD (localized to chloroplasts), Mn-SOD (localized to mitochondria), and Cu/Zn-SOD (localized to chloroplasts, peroxisomes, and cytosol).³ A fourth type, extracellular SOD (EC-SOD), contains a copper and zinc atom per subunit. It is a secreted protein and localized primarily within the extracellular matrix and at cell surfaces⁴. All four types of SOD play a critical role in scavenging superoxides and minimizing oxidative stress. Abnormal SOD activity is observed in various diseases. Increased SOD activity levels are seen in Down Syndrome⁵. Decreased SOD activity leads to harmful levels of oxidative stress and contributes to diseases such as diabetes, Alzheimer's disease, rheumatoid arthritis, Parkinson's disease, uremic anemia, atherosclerosis, some cancers, and thyroid dysfunction⁶⁻¹¹.

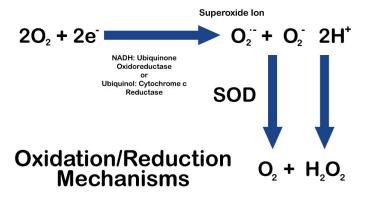


Figure 1: Reduction of superoxide anions via Superoxide Dismutase.

ASSAY PRINCIPLE

The DetectX[®] Superoxide Dismutase (SOD) Activity Kit is designed to quantitatively measure SOD activity in a variety of samples. The assay measures all types of SOD activity, including Cu/Zn-SOD, Mn-SOD, and Fe-SOD types. Please read the complete kit insert before performing this assay.

A bovine erythrocyte SOD standard is provided to generate a standard curve for the assay and all samples should be read off the standard curve. Samples are diluted in Assay Buffer and added to the wells. The substrate is then added, followed by xanthine oxidase, and the assay is incubated at room temperature for 20 minutes. The xanthine oxidase generates superoxide in the presence of oxygen, which converts the substrate into a yellow-colored product. The plate is then read at 450 nm. As the SOD activity levels increase in the sample, the superoxide concentration and yellow product decreases. The activity of the SOD in the sample is calculated after making a suitable correction for any dilution, using software available with most plate readers. The results are expressed in terms of units of SOD activity per mL.

REAGENT PREPARATION

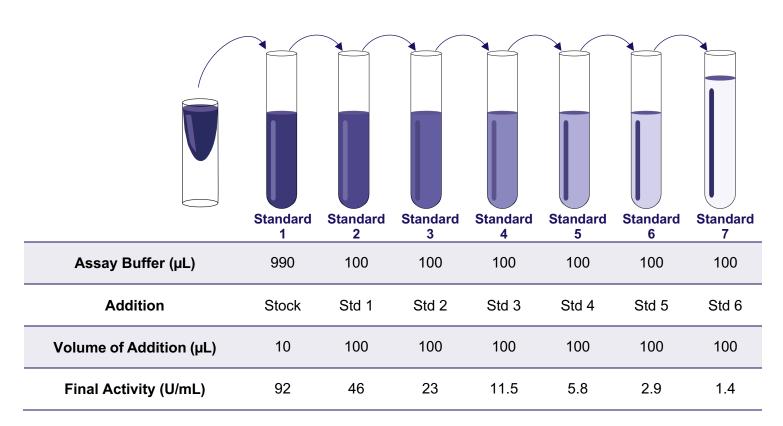
Except for the reagents listed below, all kit components are ready for use.

Reagent Preparation		Storage
	Vortex the suspension of 25X Xanthine Oxidase Concentrate prior to pipetting. Pipet from the base of the tube.	1X Xanthine Oxidase must be
1X Xanthine Oxidase	Mix 1 volume 25X Xanthine Oxidase Concentrate with 24 volumes Xanthine Oxidase Buffer gently (do not vortex).	stored in an amber vial or otherwise protected from light. Use immediately.
	For one plate, mix 100 µL 25X Concentrate with 2.4 mL of Xanthine Oxidase Buffer. Scale accordingly.	
	Vortex the vial of 10X Substrate Concentrate prior to pipetting.	Substrate Diluent must be kept tightly capped.
1X Substrate	Mix 1 volume 10X Substrate Concentrate with 9 volumes Substrate Diluent gently (do not vortex).	1X Substrate must be kept tightly capped and stored in an amber vial or otherwise
	For one plate, mix 500 μ L 10X Concentrate with 4.5 mL Substrate Diluent. Scale accordingly.	protected from light. Use immediately.

SAMPLE PREPARATION

Upon collection, all samples should be frozen rapidly and stored at -80°C until sample preparation. During sample preparation, samples should be kept on ice to maintain enzyme activity.

Sample Type	Procedure
Plasma and Serum*	
	Plasma and serum should be diluted at least 1:5 by mixing 1 volume sample with 4 volumes Assay Buffer prior to assaying. Samples may require further dilution with Assay Buffer to fall within the standard curve range.
Red Blood Cell	Lyse RBCs by adding 4 volumes of ice-cold deionized water to the pelleted RBCs from the Plasma step above. Centrifuge at 10,000 x g for 15 minutes at 4°C to remove debris. Assay immediately or store at -80°C.
(RBC) Lysates*	Lysed RBCs should be diluted at least 1:100 by mixing 10 μ L lysed RBCs with 990 mL Assay Buffer prior to assaying. Samples may require further dilution with Assay Buffer to fall within the standard curve range.
	 If starting from tissue, wash thoroughly with ice-cold 1X PBS. Proceed to Step 2B.
Cell Suspensions, Adherent Cells, And Tissue	 If starting from adherent cells, wash 1 x 10⁶ adherent cells with 1X PBS before harvesting with gentle trypsinization. Proceed to Step 1. Centrifuge ≥ 1 x 10⁶ cells at 250 x g for 10 minutes at 4°C. Discard supernatant. A) Cells: Resuspend the cell pellet or tissue in 0.5 – 1 mL ice-cold 1X PBS (+ protease inhibitors if desired) per 100 mg of cells and transfer to a microfuge tube. Proceed to step 3 or place on ice. B) Tissue: Add 0.5 – 1 mL ice-cold 1X PBS (+ protease inhibitors if desired) per 100 mg of tissue in a microfuge tube. Proceed to step 3 or place on ice. Homogenize or sonicate. Centrifuge at 1,500 x g for 10 minutes at 4°C. Collect the supernatant. Assay the supernatant immediately or store at -80°C. Dilute the supernatant at least 1:4 by mixing one volume supernatant with 3 volumes Assay Buffer prior to assaying. Samples may require further dilution with Assay Buffer to fall within the standard curve range.
	OR
	To measure cytosolic (Cu/Zn-SOD) and/or mitochondrial SOD (Mn-SOD) the supernatant from Step 1 should be centrifuged at 10,000 x g for 15 minutes at 4°C. The resulting supernatant will contain Cu/Zn-SOD and the cell pellet will contain Mn-SOD. To determine Mn-SOD activity, homogenize the pellet in ice-cold 1X PBS containing a final concentration of 2 mM potassium cyanide. Addition of cyanide will inactivate Cu/Zn SOD enzymes. Assay immediately or store at -80°C.


* Some samples may contain significant amounts of hemoglobin. After adding the Substrate solution to all wells, read and record the optical density at 450 nm. Subtract this measurement from the optical density recorded at the end of the 20-minute assay incubation.

Use all samples within 2 hours of dilution.

STANDARD PREPARATION

- 1. Label tubes Standard 1 through Standard 7.
- 2. Add 990 µL Assay Buffer to Standard 1 tube.
- 3. Add 100 μL Assay Buffer to Standard 2 7 tubes.
- 4. Add 10 µL of Superoxide Dismutase Standard stock solution to Standard 1 tube. Vortex thoroughly.
- 5. Transfer 100 µL of Standard 1 into Standard 2 tube to make a 2-fold dilution. Vortex thoroughly.
- 6. Transfer 100 μ L of Standard 2 into Standard 3 tube to make a 2-fold dilution. Vortex thoroughly.
- 7. Continue serially diluting into the remaining tubes. This process and the final activities are summarized in the table below.

Use all Standards within 2 hours of dilution.

Before You Begin:

- Room Temperature for this assay is defined as 22°C 24°C.
- Dilute samples as described in Sample Preparation.
- Run all standards and samples in duplicate.
- Use the blank plate template on the back page of this booklet to design your plate layout and aid in proper sample and standard identification.
- Set plate parameters on the plate reader for a 96-well Corning CoStar 3695 plate. See <u>ArborAssays.com</u> for plate dimension data.
- 1. Add 10 μ L Samples or Standards into duplicate wells in the plate.
- 2. Add 10 μ L Assay Buffer into duplicate wells as the Zero Standard.
- 3. Add 50 μL 1X Substrate to each well.
 - If your samples have significant yellow coloration, pre-read the optical density at 450 nm.
- 4. Gently mix the 1X Xanthine Oxidase and add 25 μL to each well.
 - The solution will begin to turn yellow
- 5. Incubate at room temperature for 20 minutes.
- 6. Read the optical density at 450 nm.

CALCULATION OF RESULTS

Follow the instructions below or use this online tool: https://www.myassays.com/assay.aspx?id=968

- 1. Use four-parameter logistic curve (4PLC) software to calculate the SOD activity for each sample. Gather all raw data OD readings from each Sample and Standard, including the Zero Standard.
- 2. Average the duplicate OD readings for each Sample, Standard, and Zero Standard (Mean OD).

AMPLE:			
Sample	Replicate 1 OD	Replicate 2 OD	Mean OD
Standard 1	0.120	0.128	0.124
Sample 1	0.341	0.343	0.342
Sample 2	0.463	0.469	0.466
Sample 3	0.822	0.834	0.828
	Sample Standard 1 Sample 1 Sample 2	SampleReplicate 1 ODStandard 10.120Sample 10.341Sample 20.463	Sample Replicate 1 OD Replicate 2 OD Standard 1 0.120 0.128 Sample 1 0.341 0.343 Sample 2 0.463 0.469

3. If the OD was pre-read before incubation (Pre-Incubation OD), subtract this Pre-Incubation OD from the Mean OD and proceed with this Corrected Mean OD.

EX/	AMPLE:			
	Sample	Mean OD	Pre-Incubation OD	Corrected Mean OD
	Standard 1	0.124	n/a	
	Sample 1	0.342	n/a	
	Sample 2	0.466	n/a	
	Sample 3	0.828	0.095	0.733

4. Plot the standard curve with Mean OD for the Standards on the y-axis and SOD activity (U/mL) on the x-axis. Perform a 4PLC fit.

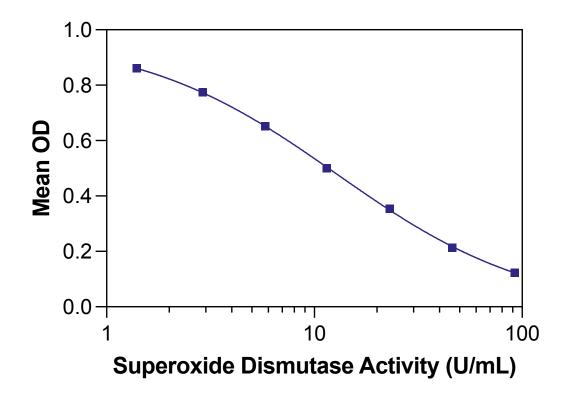
Use the sample Mean OD (or Corrected Mean OD) readings and the 4PLC fit to calculate SOD activity in diluted samples. If diluted sample SOD activity is outside of the range of the standards, the sample should be prepared again at a more appropriate dilution.

EXA	EXAMPLE:					
	Sample	Mean (Corrected) OD	SOD Activity (U/mL)			
	Sample 1	0.342	23.7			
	Sample 2	0.466	13.5			
	Sample 3	(0.733)	2.9			

5. If the original sample was diluted, multiply the sample SOD activity by the sample dilution factor to determine the activity of SOD in the original sample.

EXAMPLE: Sample	SOD Activity	Sample	Original Sample SOD
Sample 1	(U/mL) 23.7	Modification Factor n/a	Activity (U/mL) 23.7
Sample 2	13.5	4	54.0
Sample 3	2.9	5	14.5

TYPICAL DATA


A Always run your own standard curve. This data should NOT be used to interpret results.

Sample	Mean OD	SOD Activity (U/mL)
Standard 1	0.124	92.0
Standard 2	0.214	46.0
Standard 3	0.355	23.0
Standard 4	0.500	11.5
Standard 5	0.652	5.8
Standard 6	0.774	2.9
Standard 7	0.860	1.4
Zero	0.939	0.0
Sample 1	0.342	23.7
Sample 2	0.466	13.5

SOD Unit Definition

One unit of SOD is defined as the amount of enzyme causing half the maximum inhibition of the oxidation of 7.5 mM NADH in the presence of EDTA, manganese ions, and mercaptoethanol at 23°C and pH 7.4 over 15 minutes¹².

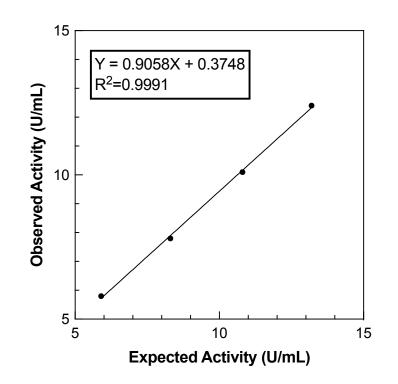
Typical Standard Curve

VALIDATION DATA

Sensitivity and Limit of Detection

Sensitivity was calculated by comparing the ODs for twenty wells run for each of the Zero Standard and Standard 7. The detection limit was determined at two standard deviations from the zero along the standard curve.

Sensitivity was determined as 0.422 U/mL.


The Limit of Detection was determined in a similar manner by comparing the ODs for twenty wells run for each of the Zero Standard and a low activity sample.

The Limit of Detection was determined as 0.200 U/mL.

Linearity

Linearity was determined in red blood cell lysates by diluting two samples with known SOD activity in Assay Buffer. One sample had a SOD activity of 3.4 U/mL (Low Sample), and a second had a SOD activity of 15.7 U/mL (High Sample). The two samples were mixed in the ratios given below and the measured activities were compared to the expected values for each given ratio.

Low Sample	High Sample	Expected Activity (U/mL)	Observed Activity (U/mL)	% Recovery
80%	20%	5.9	5.8	99.0
60%	40%	8.3	7.8	93.8
40%	60%	10.8	10.1	93.7
20%	80%	13.2	12.4	93.7
			Mean Recovery	95.0%

Intra Assay and Inter Assay Precision

For intra assay precision, four samples were diluted in Assay Buffer and 20 replicates were run in one assay. For inter assay precision, four samples were diluted in Assay Buffer and duplicates of each sample were run in 20 assays over multiple days by five operators. The %CV represents the variation in activity (not optical density) as determined using a standard curve.

	Intra Assay Precision		Inter Assay Precision	
Sample	SOD Activity (U/mL)	% CV	SOD Activity (U/mL)	% CV
1	25.5	2.0	23.7	8.3
2	20.7	2.5	19.3	9.2
3	15.5	3.0	13.5	10.9
4	7.4	1.4	6.6	15.3

SAMPLE VALUES

10 human serum and 10 human EDTA plasma samples were diluted in Assay Buffer and run in the assay. Five samples of Red Blood Cells (RBCs) from EDTA plasma were normalized to hemoglobin (Hgb) levels using the DetectX[®] Hemoglobin Detection kit, K013-H1. The average activities and ranges for each sample type are shown below.

Sample Type	Recommended Minimum Dilution	Adjusted Average Activity	Adjusted Activity Range
Serum	1:5	11.5 U/mL	7.3 – 14.4 U/mL
Plasma	1:5	13.8 U/mL	8.8 – 19.1 U/mL
RBCs	1:100	42,120 U/g Hgb	34,718 – 50,943 U/g Hgb

INTERFERENCE

Bilirubin and hemoglobin were evaluated at high and low activities of SOD to evaluate their potential to interfere with the assay.

Interferent	Effect at High SOD Activity	Effect at Low SOD Activity		
Bilirubin (5 mg/dL)	1.7% Decrease in Signal	7.9% Decrease in Signal		
Hemoglobin (0.4 mg/dL)	8.8% Decrease in Signal	6.9% Decrease in Signal		

TROUBLESHOOTING

Issue	Possible Cause & Solution				
Reagent Shortage	 Check under the cap for additional reagent. Pulse spin reagent containers to collect contents prior to opening when possible. When using a multichannel pipette, return unused reagent to container for later use. 				
Erratic Values	 Prerinse pipet tips with desired reagent prior to aspirating the required volume. Deliver volume with care to prevent splashing into adjacent wells. Preparation and dispensing of 1X Xanthine Oxidase. 				
Low Signal	 Verify the plate reader is set to 450 nm. Confirm reagents are at room temperature prior to use. 				
Legacy Results	 To improve the assay robustness, the definition of one unit of SOD was redefined on July 22, 2024 (see page 10). To compare results after this date with results obtained previously, multiply the previous activity results by 23. The previous definition of one unit of SOD was the amount of enzyme causing half the maximum inhibition of the reduction of 1.5 mM nitro blue tetrazolium (NBT) in the presence of riboflavin at 25°C and pH 7.8. 				

CITATIONS

- 1. Liocher, SI and Fridovich, I., "The Effects of Superoxide Dismutase on H2O2 Formation"., Free Rad. Biol. Med., 2007, 42:1465-1469.
- 2. Imlay, JA. "Cellular Defences Against Superoxide and Hydrogen peroxide"., Ann Rev. Bichem., 2008, 77:755-776.
- 3. Hajiboland, R. (2014). Chapter 1 Reactive Oxygen Species and Photosynthesis. In Oxidative Damage to Plants (pp. 1–63). Essay, Academic Press.
- 4. Vliet, A. van der. (2015). Antioxidant Defenses in the Lung. In Comparative Biology of the Normal Lung (2nd ed., pp. 489–507). Essay, Academic Press.
- 5. Torsdottir, G. et al. "Case-control studies on ceruloplasmin and superoxide dismutase (SOD1) in neurodegenerative diseases: a short review". J.Neurol.Sci. 2010. 299(1-2):51-54.
- Giacco, F & Brownlee, M. "Oxidative stress and diabetic complications". Circ.Res. 2010. 107(9):1058-1070.
- 7. Bae, S-C, et al. "Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients", J.Amer.Coll.Nutr. 2003. 22(4):311-315.
- 8. Akbostanci, MC, et al. "Erythrocyte superoxide dismutase activity differs in clinical subgroups of Parkinson's disease patients". Acta Neurol.Belg. 2001. 101:180-183.
- 9. Shainkin-Kestenbaum, R, et al. "Reduced superoxide dismutase activity in erythrocytes of dialysis patients: a possible factor in the etiology of uremic anemia". Nephron. 1990. 55(3):251-253.
- 10. Saito, T. "Superoxide dismutase level in human erythrocytes and its clinical application to patients with cancers and thyroidal dysfunctions". Hokkaido Igaku Zasshi. 1987. 62(2):257-268.
- 11. Okado-Matsumoto, A, and Fridovich, I., "Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver". J. Biol. Chem. 2001, 276:38,388-38,393.
- 12. Paoletti, F et al. "A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts." *Analytical biochemistry* vol. 154,2 (1986): 536-41.

Kits	Catalog No.
Catalase Colorimetric Detection Kit	K033-H1
Catalase Fluorescent Detection Kit	K033-F1
Glutathione Colorimetric Detection Kit	K006-H1
Glutathione Fluorescent Detection Kits	K006-F1/F5
Glutathione Reductase Fluorescent Activity Kit	K009-F1
Hemoglobin Dual Range Detection Kit	K013-H1
Hydrogen Peroxide Colorimetric Activity Kit	K034-H1
Hydrogen Peroxide Fluorescent Activity Kit	K034-F1
Nitric Oxide Colorimetric Detection Kit	K024-H1

RELATED PRODUCTS

LIMITED WARRANTY

Arbor Assays warrants that at the time of shipment this product is free from defects in materials and workmanship. This warranty is in lieu of any other warranty expressed or implied, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose.

We must be notified of any breach of this warranty within 48 hours of receipt of the product. No claim shall be honored if we are not notified within this time period, or if the product has been stored in any way other than outlined in this publication. The sole and exclusive remedy of the customer for any liability based upon this warranty is limited to the replacement of the product, or refund of the invoice price of the goods.

DetectX®, ThioStar®, and the Arbor Assays logo are all registered trademarks of Arbor Assays.

CONTACT INFORMATION

For details concerning this kit or to order any of our products please contact us.

Arbor Assays

1514 Eisenhower Place Ann Arbor, Michigan 48108 USA

Phone: 734-677-1774

Web: www.ArborAssays.com

Email Addresses:

Info@ArborAssays.com

Orders@ArborAssays.com

Technical@ArborAssays.com

OFFICIAL SUPPLIER TO ISWE

Arbor Assays and the International Society of Wildlife Endocrinology (ISWE) signed an exclusive agreement for Arbor Assays to supply ISWE members with assay kits and reagents for wildlife conservation research.

PLATE LAYOUT

Ξ	G	т	m	D	ဂ	ω	►	
								-
								2
								ယ
								4
								5
								6
								7
								8
								9
								10
								11
								12

FSC Printed on Forest Stewardship Council certified paper

©2024